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Note 

Boundary Treatments for Implicit Solutions 
to Euler and Navier-Stokes Equations 

Implicit time marching schemes like those of Beam and Warning [I], Briley and 
MacDonald [2], and MacCormack (1980) [3] g enerally have not been as robust as 
would be expected from a stability analysis for the pure initial value problem. 
Recently, Yee et al. [4] illustrated that a more general stability analysis, which 
includes the effect of boundary conditions, may explain some of the seemingly 
anomalous behavior of these schemes. The major theoretical basis for this type of 
modal stability was established in a series of papers by Kreiss [5,6], Osher [7,8], 
and Gustafsson ef al. [9]. 

Yee as well as Gustafsson and Oliger [lo] considered the effect of inflow-outflow 
boundary condition formulations on the stability of a class of numerical schemes to 
solve the Euler equations in one space dimension. The characteristic feature of a 
subsonic inflow-outflow boundary is that a priori boundary values may be specified 
for only some problem variables, while remaining boundary values must be deter- 
mined as part of the solution process. Yee demonstrated a rather large disparity in 
stability bounds between the use of explicit or implicit extrapolation procedures and 
in general demonstrated that implicit extrapolation procedures had the least 
restrictive stability bounds. The intent here is to explore computationally the 
implication of this work for several two-dimensional Euler and Navier-Stokes 
simulations. 

NUMERICAL PROCEDURES 

The two-dimensional Navier-Stokes equations may be written in vector form as 
Ill 

The strong conservation law form may be retained under a general coordinate 
mapping as illustrated in Viviand [ 111. All computations to be described were 
conducted in a mapped computational domain but for simplicity numerical and 
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FIG. I. Grid numbering schene for boundary condition formulation. 

boundary condition procedures will be described in the simple two-dimensional 
geometry shown in Fig. I. 

A 1979 paper by Beam and Warning [ 121 outlined a solution scheme for systems 
of equations of form (1) which included most numerical schemes for which the modal 
boundary condition analysis has been conducted. This scheme uses the well- 
developed methods for ordinary differential equations as a guide to developing 
numerical methods for partial differential equations. The scheme presented combines 
linear multistep methods, local linearization, approximate factorization, and one leg 
methods. The shceme, a generalization of the scheme presented in [ 11, solves for a 
variable p(E) u which is equivalent to Au” in the class of schemes represented by the 
earlier paper. The earlier scheme is somewhat easier to understand as Au” is just the 
change in the solution from time level n to level n + 1, while p(E) u is a more general 
time differencing formula. 

The solution schemes chosen are implemented as 

(I + L;) Au* = RHS”, 

(I+L;)AU”=AU”, 

u n+‘=U”+AU”, 

(2) 

(3) 

(4) 

where RHS” is very nearly the finite difference approximation to the steady state 
equations, and L, and L, are linearized difference operators representing a particular 
time and spatial differencing scheme. 

Full details of these operators are contained in [ 11. If the spatial differencing is 
taken to be centered, the computational form of either Eq. (2) or (3) appears at each 
interior point as 

Ai”dU,“-, + B;AU; + C;AUu;+, = D;, (5) 

where A,, Bi, and Ci are 4 X 4 matrices known at time level n, Di is the right-hand 
side vector at node point i known at time level n, and AU; is the unknown vector at 



304 THOMPKINS AND BUSH 

node point i. The boundary points will be assumed to involve only the nearest two 
points in the x direction. 

A;AU, + B;AU, + C;AU, = 0;. (6) 

The restriction to extrapolation along grid lines (actually transformed grid lines), is 
necessary to maintain the block tridiagonal form and avoids possible instabilities due 
to skewed extrapolation, see [ 131. 

The full matrix equation will reduce to tridiagonal form if the first and nth 
equations are substituted into the second and the (n - i)th equations, for example, 

B; = B, - A,A,‘B,,. (7) 

BOUNDARY TREATMENTS 

Inflow-outflow Boundary 

The finite difference algorithms studied usually require more boundary values than 
are required for the partial differential equations which they simulate. These extra 
numerical boundary conditions cannot be set arbitrarily and are usually determined 
through an extrapolation procedure. These extrapolation procedures may either be 
explicit, that is boundary values needed at a new time are determined uniquely from 
the old time level solution, or implicit, that is, the boundary values are determined as 
part of the new time level solution. The analytical boundary conditions or the 
extrapolation quantities are usually not conservation variables but primitive variables, 
and a local linearization is usually required as part of defining the extrapolation 
procedure. 

Consider, for example, an implicit subsonic outflow boundary at which the local 
static pressure is specified as a boundary condition and all other variables are to be 
determined by extrapolation. Figure 1 shows a typical computational grid and defines 
the subscripts used. 

P;,; I = P;,,i given, (8) 

~~~~l’=2i~~i~~~-i%:i:ll 
implicit space extrapolation. (9) 

In order to complete the boundary formulation, all equations must be expressed in 
delta form and in terms of conservation variables. For the total internal energy this 
may be done through its definition 

Et = P/b - 1) + f @u)‘/P + (4%. (10) 

Since the relations between conservation variables are nonlinear, some linearization 
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step will be necessary before the boundary condition formulation may be used. We 
choose to introduce our linearization step here as 

AE, = (E;+’ -E;) = (l/(y - 1)) AP-f(u* + u*)~ Ap + u”A@u) + v”A@v) 

+ (AuAv, Au*, Au*, ApAu, ApAv). (11) 

If terms of order AUAV are neglected, the error is equivalent to the linearization error 
of the interior point scheme. We may express the transformation from boundary 
variables to conservation variables as 

ui,j = 0 

- i(uf+ v*y u” v” l/(y- 1) 

AP 

APU = Ni,jA Wi+j 

APV 
AP (12) 

we shall in general denote transformation from conservative to primitive variables as 

A Wi,j = Ti,jAUi,j. (13) 

The extrapolation conditions for Wi,j are 

(14) 

or 

AWi,j=PJ-1 wi,j-l + pJ-2 wi,J-2° (15) 

The final equations relating the boundary conservation variables and the interior 
conservation variables are 

or 

A Ui.Pi’,,- 1 AUi,,-l + H~,,-,AUi+,-2. (17) 

With the definition of PJ-, and PJe2 given in Eq. (15), Ti,,- 1 and Ti,J-2 are identity 
matrices. 
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An explicit outflow boundary treatment was constructed using 

(18) 

and setting Gi,J_ i = Hi,J-l= 0. 
In forming Eq. (9), we choose to extrapolate the local momentum flux rather than 

a specific primitive or characteristic variable; choice of other extrapolation variables 
would alter only the transformation matrix Ti,j. Extrapolation of the momentum flux 
is somewhat arbitrary, but its choice did not affect the accuracy of the computational 
results to be presented. 

Solid Wall Boundary Procedures 

The boundary treatment procedure illustrated for inflow-outflow boundary are 
easily extended to cover solid walls in either inviscid or viscous flow situations. Here 

i 

(19) 

(20) 

where q is the velocity parallel to the wall and S is the wall slope. For the inviscid 
flow examples aP/ay, aT/ay, and aq/ay are set equal to zero, while, for the viscous 
flow examples v, u, and aT/aY are set equal to zero and t?P/ay is equal to 
4/3,u(~‘/L$‘)(v). All derivatives are evaluated by one-sided finite difference formulas. 

As indicated by Buggeln et al. [ 141, an AD1 type procedure requires boundary 
conditions for the intermediate step. Usually the intermediate step was in the y 
direction and the boundary conditions were applied as if the intermediate results were 
physical quantities, that is, the boundary conditions of Eq. (19) were applied to the 
quantities AU* of Eq. (2). 

Explicit wall boundary treatments are generated by applying the primitive variable 
form of Eq. (19) and forcing the correction matrices to be zero. 

NUMERICAL RESULTS 

Three geometries were selected for detailed study: an inviscid supersonic diffuser 
with weak oblique shock, supersonic in/supersonic out; an inviscid supersonic 
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FIG. 2. Computational grid for weak shock diffuser calculations. 

diffuser with a strong normal shock, supersonic in/subsonic out, and a viscous super- 
sonic diffuser with weak oblique shock illustrating a shock-boundary layer 
interaction. Sketches of the geometries are shown in Figs. 2-4. Solutions for each 
geometry were run to steady state for a range of time step sizes. For convenience, 
time step sizes are reported in terms of x and y CFL numbers 

(CFL,) = max(dt(u + C)i,j/dXi,j), (21) 

(CFL), = max(dt(v + C)i,,i/dYi,j). (22) 

The time step size was uniform over each calculation which results in nonuniform 
CFL, and CFL, numbers. The maximum value of each is reported. Sample 
convergence history plots are shown in Fig. 5 which shows the log of the value of the 
point maximum steady state residual 

SSR = dE/c?x - cYR/ax + r3F/dy - aSjay (23) 

plotted against the iteration number. A solution was not termed stable unless the 
residual converged to the machine accuracy, about 1 x 10P6. All calculations used a 
32 bit floating point word size. 

Each geometry calculation was run with fully explicit extrapolations, du = 0, and 
with fully implicit extrapolations; the results are summarized in Table I. The most 
interesting of these results are shown in Fig. 5. At a tipe step size corresponding to a 
CFL, number of 15, convergence was rapid and very nearly monotonic in time. At 
smaller time step sizes, the convergence was slower but nearly monotonic. At a CFL, 
of 45, convergence rates initially appeared to be faster than for a CFL, of 15, but the 
final residual values oscillated sugnificantly about its minimum value. At a CFL, of 
90, the convergence rate was substantially slower than at a CFL, of 15, and at larger 
CFL, values the solution diverged. 

The results for the strong shock diffuser can reasonably be compared to those of 
Yee et al. [4]. They reported a CFL number stability limit between 10 and 20, while 

FIG. 3. Computational grid for shock-boundary layer calculations. 
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FIG. 4. Computational grid for strong shock calculations. 
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FIG. 5. Convergence history for strong shock diffuser calculation. 



310 THOMPKINS AND BUSH 

we found stability limits between 90 and 150. Thus the analysis in one space 
dimension does appear to provide a sufficient condition for stability, but it may not 
provide a close approximation to the stability limit. It is essential, however, to 
emphasize that the largest convergence rates were observed at time steps 
corresponding to CFL numbers of order 10 and that only a marginal computational 
time advantage for the implicit boundary formulations was observed. 

The results for the shock-boundary layer calculation are very interesting but they 
demonstrate a substantial computational advantage for the implicit solid wall 
conditions, not for the inflow-outflow extrapolation. Here the stability boundary and 
the best convergence rates were observed at time step sizes corresponding to CFL, 
numbers of 5 to 10. When using the implicit wall conditions, the algorithm stability 
appeared to be independent of grid spacing in the normal direction as might be 
hoped. When using the explicit wall condition, the algorithm stability was limited to a 
CFL, number of about 500. 

CONCLUSIONS AND DISCUSSION 

While it is difficult to generalize from only a few test examples, it is apparent that 
a better appreciation of the role that boundary treatments play in implicit algorithms 
has allowed the development of far more robust Beam and Warming type solvers. For 
both exphcit and implicit boundary treatments, we were able to compute solutions 
accurately with time steps 50 to 100 times larger than explicit time limits while 
retaining the ability to choose rather arbitrary initial conditions. In many cases, our 
limiting time steps for the two-dimensional test problems were in fact larger than the 
limit which a one-dimensional analysis would suggest. 

The most important computational result we observed was that while an improved 
appreciation of boundary treatments did allow very large time step sizes to be used, 
the largest convergence rates to steady state were observed at relatively small time 
step sizes. For the two-dimensional test problems, the best CFL, numbers were of 
order 10, not of order 100. One-dimensional test examples showed no such 
convergence rate behavior. Presently unpublished analysis by Abarbanel et al. ] 151 
has linked this behavior to the approximate factorization form of Eqs. (2) and (3). 
This effect now seems to be setting the time step sizes for our viscous flow 
computations and new work should focus on methods for overcoming this limitation. 
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